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By further study of the geometry of the harmonic superspace constraints we make the relation explicit between the operator and 
path integral approaches to the manifestly covariant harmonic superstring. 

In particular we find the correct complete set of functionally independent gauge symmetries for the auxiliary variables and 
identify the ones corresponding to the harmonic superfield postulate in the operator formalism. Then, we deduce in a systematic 
way the lagrangian path integral from the well defined covariant hamiltonian formulation of the GS superstring. 

1. Introduction 

In a series of  papers [ 1-4] we performed the super- 
Poincar6 covariant canonical (operator)  quantiza- 
tion o f  the D =  l0 Brink-Schwarz (BS) superparticle 
[ 5 ] and the Green-Schwarz  (GS)  superstring [ 6,7 ]. 
Furthermore we succeeded to construct, using the 
BFV-BRST ghost formalism [ 8 ], the relevant off- 
shell unconstrained superfield action for the point- 
particle limit o f  the GS superstring, i.e. the D =  10 
super-Yang-Mills (SYM) theory [ 9,10 ]. 

The main tool was the introduction of  auxiliary 
bosonic Lorentz-vector and Lorentz-spinor variables 
(u~,  v,~ ~/2 ) called "harmonics"  since they form a 
homogenous space related to the "moving-light-cone" 
homogenous space S O ( 1 , 9 ) / S O ( 8 )  × S O (  1,1 ) [ 11 ]. 

In such an approach it is natural to construct the 
quantum theory by restricting the wave functions to 
be harmonic superfields [ 12 ] o f  a form which explic- 
itly displays certain local harmonic symmetries o f  the 
extended superspace. Therefore it was very conve- 
nient (and in fact essential for getting the BRST 
(super)-field theory action [9,10] ) to work within 
the operator quantization formalism. 
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However, much of  our intuition about the string 
theory is coming from the path integral formulation 
which allows the use o f  the powerful two dimensional 
conformal field theory techniques. 

In the present letter we reexpress the information 
codified in the structure o f  the "Hilbert  space" o f  
superfield wave functions (the space of  harmonic 
superfields [1,10 ] ) in the form of  harmonic gauge 
symmetries which are handy for the deduction o f  a 
covariant path-integral representation of  the GS 
superstring. 

The deduction of  the path integral from a well 
structured hamiltonian formalism is essential in two 
ways. First, at the conceptual level, systems with 
variable structure "constants"  in the constraint 's al- 
gebra present certain ambiguities in the measure of  
the path integral [ 13 ] which can be resolved system- 
atically only by using the hamiltonian techniques. 

Second, the well structured algebraic set of  con- 
straints allows us to have complete control on the 
functional independence (BFV-irreducibility [ 8 ] ) o f  
the gauge invariance and to make sure that they really 
are eliminating all the auxiliary variables (see sec- 
tion 2). 

In section 2 we reexpress in a convenient way our 
harmonic superspace geometry and identify the rela- 
tion between certain harmonic gauge invariances and 
the form of  the harmonic superfields composing the 
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"Hilber t  space" of  superfield wave functions. 
In section 3, starting f rom the well defined hamil-  

tonian path integral we deduce the corresponding 
manifestly covariant  lagrangian path integral for the 
GS superstring by integrating over the canonical string 
momenta .  

2. Harmonic  superspace geometry 

The auxiliary variables (u~, v + 1/2 ) needed for the 
covariant  quant izat ion of  the GS superstring were in- 
t roduced in refs. [ 1,2 ] as follows. The indices/~ and 
o~ t ransform as vector  and Majorana-Weyl  spinor 
under the global Lorentz SO (1,9),  respectively, while 
the indices a, _+ ½ t ransform respectively under  the 
internal local SO (8)  and SO ( 1,1 ). Due to the triality 
properties of  SO (8)  the indices a = 1 . . . .  , 8 can be 
chosen to t ransform under  any of  the fundamenta l  
(s) ,  (c) ,  (v)  representat ions of  SO(8) .  

a +1/2  (u~,, v ,  ) were taken in refs. [ 1,2] to satisfy the 
following kinematical  constraints: 

U~Ub~'--Cab=O , 

blau(U +_ ll20..UV+_ 1/2) = 0 ,  

(V+I/20" l tV+I/2) (V-- I /2~ 'uu-- I /2)"[ ' I=O.  (2.1) 

Here Cab denotes the invariant  metric  tensor in the 
relevant SO (8)  representat ion space. 

Due to the remarkable  D =  10 Fierz identities (see 
e.g. ref. [ 7 ] ) the following composite Lorentz vectors: 

U~ ~ (V+-I/2okIV +-1/2) (2.2)  

are identically light-like. 
Now we are going to present a simplified set o f  

auxiliary variables with more  t ransparent  geometri-  
cal meaning of  the associated gauge invariances ren- 
dering these auxiliary variables pure-gauge. 

First, we observe that  due to the D =  10 Fierz 
identities: 

(V+I/217uV--1/2)(V+I/2[~lIl)--I/2) 

=--2(V+I/2{TuV+I/2)( l ) - - I /217~V -1/2  ) . (2.3)  

Eqs. (2.3)  and (2.1) tell us that  we can take the fol- 
lowing composi te  space-like vector: 

8 - -  N//2 (/) + 1/20-/.t ~) -- 1/2 ) (2.4)  U # ~  

as one of  the eight u~ entering (2.1) ~ 
The identification (2.4) reduces simultaneously the 

internal SO (8)  to an internal SO ( 7 ) which will act 
on the indices p = 1,..., 7 of  the remaining seven space- 
like vectors u~. This amounts  to splitting the SO(8 ) 
indices a = (p, 8 ) into SO ( 7 )-vector and SO ( 7 )-sin- 
glet ones. 

Thus, the simplified set (ug,  v~ l /a )  of  auxiliary 
variables now obeys the following kinematical  
constraints: 

uy, uqU-6pq=o  , 

u,;,x/5(v+"2,r~v-'/2)=O, u~(v+-'/2a~v+-'/2)=O, 
(v+l /20"uv+l/2)( l ) - - l /2al tV--1/2)-~ l = O  . (2.5) 

Next, we introduce a set of  hamil tonian first-class 
constraints describing the pure gauge dynamics  of  
(u~, v + 1/2 ) (2.5)  ( summat ion  over  Lorentz-indices 
/t, o~ is suppressed):  

DPq-~ - uPTcqu + UqT~Pu -- I v + l /2 aPqn ~- i /2  

11'--l/2"ePq"n'+l/2 (2.6) - -  ~1¢ t,, ILl) 

D s p = - - u  87r.u lv+l/2~80.pT.l~l/2 

l,,-l/2,.,8,.,p~.+l/2 (2.7)  

D-+=._½(v+t/zrG-l/2 --1/2 +1/2 - v  n~ ) , ( 2 . 8 )  

D ±P= - u +-n~- I v~: l/2a+-aVn~ t/2,  (2.9)  

1 "-T- 1/2~ +- tr8"n" -+ 1/2 (2.10) 

/~ 8p ~_~ - -  I V +  1/20-80.P~ ~- 1/2 + 21 . . . . .  , ,-- 1/2,-eS~v~ v + 1/2. (2.11) 

Here (n~-~/2)% (nP~)u denote canonical m o m e n t a  
conjugated to v + ~/2, u~: 

{ ( n v  ~ 1 / 2 ) . ( ~ ) ,  V~ l / 2 ( n ) } p B  = - - 6 ~ ( ~ - - n )  , 

{ (7~P) ,u(~) ,  uq(?~)}pB = --(~Pqqut, f~(~--?]) ( 2 . 1 2 )  

(~, q denote the string world-sheet parameter  at fixed 
world-sheet t ime r; in most  cases they will be sup- 
pressed for brevi ty) ,  
uSu, u~ are the same as in (2.2),  (2.4),  

a -  + u + ,~s_,~u,s ap=_aUuV (2.13) 

~! Actually, since {u~} form a spaceqike frame on the surface 
(2.5), we can always rotate this frame by local SO(8) rota- 
tions such that one of the frame vectors, e.g. u'u, will coincide 
with the space-like unit vector x/2(v + t/2auV- t/2). 
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a m p r q  = ¢TlPI~TP2...a prq] . (2.13 cont 'd) 

Comparing (2 .6)- (2 .10)  with the set of con- 
straints Dab, D - +, D ± a used previously in refs. [ 1- 
4, 10 ] we immediately see that: 

(i) The D a~ spanning the SO (8) algebra coincide 
with the subset (D pq, D sp) (2.6), (2.7), where the 
D pq span the SO(7) subalgebra and the D 8p corre- 
spond to the coset SO (8 ) /SO (7); 

(it) The D -+~ spanning the coset SO(1,9) /  
SO(8 )×SO(1 ,1 )  coincide with the subset (D ±p, 
Des)  (2.9), (2.10); 

(iii) D -+  (the generator of the local SO( 1,1 ) ) is 
the same in both versions. 

The meaning and the properties of the constraints 
/~8p (2.11 ) are as follows. First, we observe that the 
number of independent components of ~/'"±vot 1/2 , U p ), 
accounting for the kinematical constraints (2.5), is 
52 which exactly coincides with the number ofham- 
iltonian constraints (2 .6) -  (2.11 ). Next, we find 

{/~ 8p, (Dqr, DSp, D - + , D + q , D ± 8 ) } p B = O  ' (2.14) 

{/~Sp(~), /~8q(~]) }pB = ~ p q r ( ~ ) ~ 8 ( ~ ) 6 ( ~ _ _ ~ ] )  ' (2 .15)  

7 p q r = ~ / 2 (  u - l l 26pq ru  + l l 2 )  , 

{/~sp, ( u f ,  u 8, uq)}p, = 0 .  (2.16) 

In deriving (2.15 ) we used the identities: 

V I ~ ( v - I I 2 6 p q r v + I I 2 )  , I (V-+ 1/20,8ar7~ v:I:1/2 ) 

~.  --1- 1 ( u ± l / 2 ~ p q T [ ~ l / 2 )  , (2 .17)  

which follow from (2.5) and the D--10 Fierz 
identities. 

From (2.14 ) -  (2.16 ) we notice that the subset of 
constraints /~sp (2.11) form a closed subalgebra 
commuting with the SO(1,9) algebra of the con- 
straints (2 .6) -  (2.10) (introduced in our previous 
papers [ 1-4, 10] ) and, moreover,/~sp leaves invar- 
iant the  frame (u~ , u s, uP) (cf. (2.16)).  

Now the geometric meaning of (2.6)-(2.11 ) be- 
comes extremely transparent. First, with the help of 
(2 .6) -  (2.10 ) (the subset of constraints spanning the 
SO(1,9) algebra) we can always rotate the frame 
( u f ,  u s, u~) to any fixed orientation in spacetime. 
Second, with the help of (2.11 ) which do not move 
anymore the frame (cf(2.16)) ,  we can fix com- 
pletely the remaining freedom in the Lorentz spinors 
v~ 1/2 entering (2.2), (2,4). 

This is the geometric manifestation of the pure- 
gauge property of our auxiliary variables (u p, v~ 112 ). 

In order to make contact with the covariant canon- 
ical (operator) quantization of the GS superstring 
and its point-particle limit - the BS superparticle - 
performed in refs. [ 1-4,10 ], let us point out that the 
space of harmonic superfield wave functions for the 
BS superparticle used in refs. [ 1,3,10] 

O(p, O, u, v) 

= Z \ p +  ) . . . . . .  u~+..'uL 

+ pu=v± l/2gv+_ l/2) (2.18) (p+- - u  u 

is nothing but the space of general solutions of the 
following Dirac constraint equations entering the co- 
variant first-quantization formalism: 

o P q o = o  , D8p~=0 ,  

D -  + ¢~=0, /~sPq~= 0 ,  (2.19) 

w h e r e  D p°, ..., /~8p denote the quantized versions of 
(2 .6)- (2 .8) ,  (2.11). 

Thus, now it is not needed to postulate that the 
wave functions belong to the space (2.18) of har- 
monic superfields where all the internal S O ( 8 ) ×  
SO( 1,1 ) indices are saturated among the u's and v's 
and the coefficients in the expansion are ordinary 
superfields which do not carry internal indices. We 
just take completely arbitrary wave functions ~(p, 0, 
u, v) with an arbitrary dependence on (u, v) and ar- 
rive systematically at the form (2.18) after solving 
the Dirac constraint equations (2.19 ). 

To conclude this section let us comment on the re- 
cent papers by Kallosh and Rahmanov (KR) [ 14] 
where a modification of our covariant quantization 
procedure for the GS superstring was proposed using 
essentially the same set of hamiltonian constraints for 
them as those introduced previously in refs. [ 1,2 ]. 

There is, however, an essential difference. The set 
of constraints in ref. [ 14 ] does not include D-a  (2.9), 
(2,10), but rather introduces constraints of the form 
(a,b= 1 ..... 8): 

Kab= ½V + l/2tTab7~ ~- 1/2. (2.20) 

Now, recalling the identity (2.17), we find that 
(2.20) are actually functionally dependent (p,q,r= 1, 
.... 7) 
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K p q -  yPq r g S r =  0 (2.21 ) 

(actually, the RHS of (2.21) is proportional to the 
kinematical constraints (2.5)) .  Therefore, in spite of 
the fact that the constraints in the KR version [ 14 ] 
are equal in number with the auxiliary variables (u, 
v), they are insufficient, in view of the functional de- 
pendence (2.21), to render all (u, v) pure-gauge. 

The break-down of  the pure-gauge nature of  (u,v) 
in the KR version is manifested on the first-quan- 
tized level through the fact that in the superparticle 
limit one obtains, using the constraints of ref. [ 14 ], 
an infinite number of unphysical supermultiplets in- 
stead of the D = 10 SYM multiplet [ 15 ]. 

3. From hamiltonian to lagrangian path integral 
formulation 

In this section we briefly sketch the systematic der- 
ivation of the functional integral representation of the 
covariantly quantized heterotic GS superstring. The 
correct treatment, especially in the case of field de- 
pendent structure "constants" of the algebra of gauge 
symmetries, starts from the hamiltonian (phase space 
form) of the functional integral [ 16,8 ]. 

For the case at hand we have 

Z =  f DXUDO~DuDvDPUDp'~Drc.Drc~ 

X D A L D A R D A  -~/2 D M  -a/2 DAabDA +-  D A ~  D] ~  

X exp (i~)d(Z (rep))zJ ~g p) O(Z (harm))A~ harm) 

X det-  12 [H + ]6(v + 1 / 2 a a 0 ) 6 ( ~ A B )  3 (QAB)  . 

(3.1) 

In eq. (3.1) the following notations are used. ~ de- 
notes the hamiltonian form of the heterotic GS ac- 
tion [2-4] (in what follows we are suppressing the 
internal string degrees of freedom corresponding to 
the left-moving sector): 

I dz  d~( Pu O~XU + p'~ 0~0~ - AL T L -- AR TR g= 

__Aal l2  D +al2__ M a l  l2 G +a/2 + ]~ + l/2 Orv ~z t/2 

+ x~O,up - A ~ b D  ~ b - A  + - D  - + 

-Af t  D _+a__/i~/~Sp). ( 3.2 ) 

Each SO(8) index a appearing in (3.1) (3.2) and 
below is short hand for a = (p, 8) (pair of  SO (7) vec- 
tor and SO (7) singlet indices). Dab, D -  +, D +_a, ~8p 

are the same as in (2.6)-(2.11) .  TL,R are the left 
(right-) reparametrization (Virasoro) constraints 
(primes indicate differentiation w.r.t, string param- 
eter ~) 

TL = _ t P  _ Y '  ~2_ar~,p,,' 4 - ~ 1 2 t , , + - 1 / 2 ~ ' ] ,  (3.3) 

Tg ~ 1 - I 2 - 4 i 0 ~ D  '~ , (3.4) 

where 

Flu = pu  + X'u + 2iOguO ' . 

Note the second term in TL (3.3) which says that the 
auxiliary variables (u,v) transform under reparame- 
trizations as left-moving world-sheet scalars. Simi- 
larly, the harmonic constraints (2 .6) -  (2.11 ) trans- 
form as conformal spin-one left-moving world-sheet 
fields 

{TL(~), Dm(q)}eB = --4Dm(~)6 ' ( ~ -  r/),  

{TR(~),DPq(r/)}pB=0, etc. 

D +a/2 and G +a/2 denote the covariantly disentan- 
gled [ 2-4 ] first-class part and second-class part of the 
fermionic string constraints D~: 

D~-~ - i p ~  - (P~+X 'u+iOe~O ' ) (~ruO) '~ , (3.5) 

D +a/2= v + l /2~al~D , (3.6) 

G +a/2= l v - l / z a a a + D .  (3.7) 

AL, AR, -.., ]8  denote Lagrange multipliers for the cor- 
responding constraints. Let us stress that all con- 
straints in ~ (3.2) except G +~/2 (3.7) are first-class. 
The Faddeev-Popov (FP) measure in (3.1) consists 
of factors corresponding to 

(i) fixing x(reP)=0 of the reparametrization 
invariance; 

( ii ) fixing X (harm) = 0 of the harmonic gauge invar- 
iances D ab ... . .  /58P; 

(iii) covariant fixing v + 1/2crao= 0 of the fermionic 
x-gauge invariance (generated by D +a/2 (3.6))  with 
FP factor det -S[H+]~5(v+t / zaao)  where H + -  

+ # + 1 / 2  + t / 2 .  u u 1] = v  J-Iv , 
(iv) factor d e t - l / 2 [ { G  +a/2, G+a/Z}pB]= 

det -4 [/-/+] corresponding to the second class con- 
straints (3.7); 
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(v) fixing (2AU=0 of the first-class kinematical 
constraints (2.5) collectively denoted by T AB . The 
explicit form ofgU B reads [ 1,2 ] 

(~r~)~x/5(v + ' / ~ v - ' / ~ ) ,  

¼(v+l/2rr,7'/2 +v-'/2rc~+l/2)}. (3.8) 

The FP determinant corresponding to t2 a8 is con- 
stant on the surface Taa=0 (2.5). 

Now, it is straightforward to perform explicitly the 
integrations over p'~, A-a/2, M-a~2, p~,. Indeed, in- 
tegrating over pg one gets the a-function 

a(0,  +4AR0; + i (v  + 1/20"aI~)o~Aa 1/2 

+ ½i(v-~/2a~a+ ),~M2 ~/2) . 

Integrating then over A 21/2, M y  1/z yields a gaussian 
integral over P~ which, in turn, is easy performed. 
The resulting functional integral can be easily rewrit- 
ten in a manifestly reparametrization invariant form 
by introducing the world sheet metric as 

x / - ~  g°° = -  [2(AL +AR) ] - '  , 

x / ~ g  °' = (AR --AL) (AL +An) --1 , 

~- -gg '~  = 8ALAR (AL +An) - l .  (3.9) 

One obtains 

Z= f DX"DOaDu DvD(7~u)mD(7~v)mDgmnDAMN 

X D J / [ A B e x p ( i S ) a ( z ( r e p ) ) z J ~ P ) a ( z ( h a r m ) ) A ~ h p  arm) 

X a (  V + 1/2~aO)O((~AB ) Z~local ' ( 3.10 ) 

S~-~ cheter°tic --1- c (3.1 1 ) ~JGS ~ ~harmonic , 

Sh . . . . .  ic ~ f dT d~ N f / ~  [(~vzgl/2 )~p_m. OmV ±1/2 

+ (..q~ p~m 0 ,, AMNp~mDMN__j[[AB~J AB] tc'tgJn -- ml'~q --  n + m 

Ato~ is a local determinant factor of the form 

Aloc.,- f DZ - ' / :  exp(i ~dz  d ,  x / ~  

X [2-a/2pn½(1-ps)Zal/2]pn_mOmXUu+), (3.12) 

where Z-~/z are world-sheet spinor bosonic ghosts and 
P,, Ps denote the world-sheet Dirac matrices. 

In eqs. (3.11 ) and (3.12) the following notations 
are used. The pmj are the D=2  (anti-) self-duality 
projectors: 

PT" =- ½ (gin.+_ e,,.,/x/__g) . 

The canonical momenta of (u, v) enter (3.1 1 ) as 

rc+ l/2=x/ --g p°~"( zc + '/z)m , 

Om q 7~= x / ~ P +  (rC,)m. (3.13) 

Similarly, the DMm N have exactly the same form as the 
hamiltonian constraints D MN (2.6)-- (2.1 1 ) with all 
canonical momenta ~z fl /2,  zr~ substituted with 
(7~+1/2)m , (TEq)m . The first term on the RHS of 
(3.11 ) is precisely the usual heterotic GS action [ 7 ]: 

sheterotic f dr d~ x / / ~  [ __lgm, OmXuO, Xu GS = 

-2i(P'2"OmX u) (OauO, O) 

+ ½gmn(Oau 0~0) (OaUOmO) ]. (3.14) 

Further simplifications in (3.10) are achieved by 
changing variables [ 2 ]: 

O,~ ~O±a/2= ( V± t/2aaO) , (3.15) 

with subsequent rescaling (in the conformal gauge for 
gmn):  

O-a/2 ~V~ = -2(O~XUu+ )l/ZO-~/2 , (3.16) 

such that the corresponding jacobian will exactly 
cancell Aloc~l (3.12). 

The final simplification is achieved by changing the 
gauge-fixing condition £2AB= 0 (3.8) into a new one: 
J/"B= 0 by just inserting the standard FP unity: 

l=3Fp f DO)AB a(~qAB(r'0) ) ' (3.17) 

where the integration is over the abelian group gen- 
erated by the kinematical constraints T AB (2.5). The 
explicit fermionic ghost representation of,~Fp reads: 

~ F P :  f D~nD~ e x p ( f d T  d ,  ~ ~ABpnm Om~A B ) .  

(3.18) 

Choosing the harmonic gauge-fixing conditions in the 
form Z (harm)-AMN= O, the corresponding FP deter- 
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minan t  has exactly the same form as (3 .18)  with 
ghosts r/~t, N, ~ M N "  

Thus, we arr ive at the following manifest ly  covari-  
ant  funct ional  integral: 

Z =  f D X ~ D ~ D u  Dv D(n~)~D(n~)~ 

X D(~D(Dr/2Df/exp  (i~)zl~], ep) , (3 .19)  

=- 2 J dz d~ [ - Oz X u OzX u - iVa ~b Vb -- (n~) 20eV 

.~_ ( n U ) z O f U ~ _  AB -- M N  - ~ Og~AB+~I~ O~rlgu], (3 .20)  

with the following notat ions:  

V ab ~_ t~abOz + P~z b 

--(O~XUu~)(OgX~u~)-1F~d(s~b)~d, (3 .21)  

1" zab ~ U , u O z  H -  a bkt ~t_ V -- 1/2aab¢7 + Oz V - 1/2 

Fz+ a ~_ + a,u U u O~U , 

( sab)~d=-- ½v- l/2a~aaba+ adV -1/2 (3 .22)  

( the lat ter  are precisely the matr ices  of  the S O ( 8 )  
generators  in the harmonic  ( c ) - sp inor  representa-  
t ion [4,10] ). 

Now it is s t ra ightforward to see the absence of  the 
conformal  anomalies .  Indeed,  integrat ing in (3 .19)  
over  u, v, nu, nv, ~, ~, qz, 0, one gets 

Z =  I DXUD~aA~r~P) 

X e x p ( i 2 f d z d ' ( - - O z X U O g X u - - i ~ a ~ b ~ b ) ) .  

(3 .23)  

Eq. (3 .23)  is s imi lar  to the non-covar ian t  expression 
in ref. [ 17 ]. I t  was shown there (see also ref. [ 18 ] ) 
that  careful computa t ion  o f  the integral  over  va  
(which is a nons tandard  zero-different ia l )  yields 
complete  cancel la t ion o f  the conformal  anomalies .  

A very interest ing p rob lem is to compare  the func- 
t ional  integral  representa t ion  (3.19)  or  (3 .10)  o f  the 
covar iant ly  quant ized heterot ic  GS superstr ing with 
the funct ional  integral  representa t ion  found in ref. 
[19] where a specific form of  the moving  frame 
( u ~ ,  u s, u~) is used, namely,  u~ are expressed in 

terms of  the tangent  vectors OmX u to the string world 
sheet, whereas (uS, u~)  are chosen to span the nor-  
mal  f rame w.r.t, the world-sheet.  
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